Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
نویسندگان
چکیده
Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm. By comparing the effects of misexpressing Nodal or an activated Nodal receptor in clones of cells, we provide evidence that Nodal acts over a long range in the endomesoderm and that its effects on the blastocoelar cell precursors are likely to be direct. The activity of Nodal and BMP2/4 are antagonistic, and although bmp2/4 is transcribed in the ventral ectoderm downstream of Nodal, the BMP2/4 ligand is translocated to the dorsal side, where it activates signalling in the dorsal primary mesenchyme cells, the dorsal endoderm and in pigment cell precursors. Therefore, correct patterning of the endomesoderm depends on a balance between ventralising Nodal signals and dorsalising BMP2/4 signals. These experiments confirm that Nodal is a key regulator of dorsal-ventral polarity in the sea urchin and support the idea that the ventral ectoderm, like the Spemann organiser in vertebrates, is an organising centre that is required for patterning all three germ layers of the embryo.
منابع مشابه
A sea urchin BMP2/4 homolog is expressed in presumptive ectoderm in the blastula embryo, and appears to influence ectoderm-endoderm boundary position by suppressing endoderm formation within presumptive ectoderm cells
In combination with classical manipulation studies, recent molecular analyses have begun to elucidate the cellular and molecular mechanisms that pattern the sea urchin animalvegetal (A-V) axis during early development (reviewed by Davidson et al., 1998; Logan and McClay, 1998; Wessel and Wikramanayake, 1999; Angerer and Angerer, 2000; Ettensohn and Sweet, 2000). This patterning process establis...
متن کاملA BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
To examine whether a BMP signaling pathway functions in specification of cell fates in sea urchin embryos, we have cloned sea urchin BMP2/4, analyzed its expression in time and space in developing embryos and assayed the developmental consequences of changing its concentration through mRNA injection experiments. These studies show that BMP4 mRNAs accumulate transiently during blastula stages, b...
متن کاملNemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.
Studies in Caenorhabditis elegans and vertebrates have established that the MAP kinase-related protein NLK counteracts Wnt signalling by downregulating the transcription factor TCF. Here, we present evidence that during early development of the sea urchin embryo, NLK is expressed in the mesodermal precursors in response to Notch signalling and directs their fate by downregulating TCF. The expre...
متن کاملPattern formation during gastrulation in the sea urchin embryo.
The sea urchin embryo follows a relatively simple cell behavioral sequence in its gastrulation movements. To form the mesoderm, primary mesenchyme cells ingress from the vegetal plate and then migrate along the basal lamina lining the blastocoel. The presumptive secondary mesenchyme and endoderm then invaginate from the vegetal pole of the embryo. The archenteron elongates and extends across th...
متن کاملPhorbol esters alter cell fate during development of sea urchin embryos
Protein kinase C (PKC) has been implicated as important in controlling cell differentiation during embryonic development. We have examined the ability of 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of PKC, to alter the differentiation of cells during sea urchin development. Addition of TPA to embryos for 10-15 min during early cleavage caused dramatic changes in their development ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 2 شماره
صفحات -
تاریخ انتشار 2010